Modules over Subalgebras of the Disk Algebra

نویسندگان

  • VERN I. PAULSEN
  • DINESH SINGH
چکیده

This paper deals with the problem of characterizing submodules of C(T) over certain subalgebras of the disk algebra A. We obtain results that are analogues of the classical characterizations of subspaces of C(T) that are invariant under multiplication by z, i.e., that are submodules over A. These characterizations yield generalizations of Wermer’s maximality theorem applicable to these subalgebras. We also present an invariant subspace theorem that seems to be of independent interest and show the equivalence of the classical theorem of the brothers Riesz on analytic measures with the theorem of Fatou.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Finsler modules over H-algebras

In this paper, applying the concept of generalized A-valued norm on a right $H^*$-module and also the notion of ϕ-homomorphism of Finsler modules over $C^*$-algebras we first improve the definition of the Finsler module over $H^*$-algebra and then define ϕ-morphism of Finsler modules over $H^*$-algebras. Finally we present some results concerning these new ones.

متن کامل

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005